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Second-harmonic generation in diatomic lattices
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It is shown that in a diatomic lattice with cubic nonlinearity resonant second-harmonic generation can take
place. Conditions for the phenomenon to be observed are established. Systems of equations governing three-
and two-wave interactions in a lattice with a complex cell are dedy&4063-651X96)05509-2

PACS numbg(s): 03.40.Kf, 63.20.Pw, 63.20.Ry

[. INTRODUCTION which can be treated as a degenerate case of a system gov-
erning resonant three-wave interactions. That is why in the

Propagation of a small-amplitude envelope soliton in anypresent paper we first derive equations for three-wave inter-
lattice with cubic nonlinearity is necessarily accompanied byactions in a lattice with a complex cell, and then analyze
a harmonic having a frequency two times greater than théhE_m for the case of a diatomic lattice when two modes co-
frequency of the discrete carrier wagew) [1,2]. In a one-  incide.
dimensional monatomic lattice this process has nonresonant The paper is organized as follows. In Sec. Il using the
character. This means that the double frequency excitatiori§chnique developed L] the systems governing the three-
are localized about the soliton and have amplitudes mucMave interaction and the second-harmonic generation are de-
smaller than the soliton orisuch terms will be referred to as fived. Examples of the second-harmonic generation in di-
companion terms, while the leading order solution will peatomic lattices are considered in Sec. lll. The results are
called a principal terin Suppose now that a one-dimensional Summarized in the Conclusion.
multiatomic lattice is under consideration and that the cw
belongs to the acoustic branch. Under definite conditions it Il. EVOLUTION EQUATIONS
may occur that the duplicated cw frequency lies on one of - ) ) )
the optical branches. Then propagation of linear waves with 10 P& more specific we consider a lattice described by the
such a frequency is allowed and the process of energy tran§lamiltonian of a rather general form
formation from the principal term to the companion one be-
comes resonant. Using the terminology accepted in nonlinear |, _ ;2 M, [U,(n)]?
optics[3] one can say that this situation corresponds to the e
second-harmonic generation.

The process of the second-harmonic generation in optical ! Ko(n n
L . . o 3 ,a1;Ny, @)U, (N)U, (N

media is well studied3,4]. In particular, it is known that anz,‘él n;‘éz (N1, @1iN2,@2) Uy (N1) Uy (N2)
there are two important conditions for the phenomenon to be
observed. The first one is the presence of nonlinearity which, 41 o K.(n . ‘n
as has been mentioned above, results in doubling the cw 3n§yl nSE,as s(Naai..ing,as)
frequency. The other important factor is the dispersion which
prevents appearing higher harmonics. Both these factors are XUg,(N1) -~ - Uqy(N3). @

intrinsic properties of a lattice with cubic nonlinearity.
Meanwhile, there are some specific features of the seconddere u,(n) is a small displacement from the equilibrium
harmonic generation in lattices. The most important one igosition of theath atom in thenth cell, M, is a mass of the
that the discreteness introduces effective periodicity and thatth atom, Ky(ny,a1;...;ny,ap) are linear p=2) and
is why the so-called synchronism condition takes a speciahonlinear p=3) force constants, and the overdot stands for
form. The second feature is that not any lattice with a com+the derivative with respect to time.
plex cell allows the second-harmonic generation and some For the mathematical treatment of the phenomenon it is
requirements on the lattice parameters must be imposed. konvenient to introduce the terminology as folloj@g. The
particular, the phenomenon is observed only for a definite cwpair (n,«) will be designated ag: x=(n,«), the displace-
wavelength and the number of modes originating the secondnent of an atom will be described by a normalized function
harmonic generation is related to the number of atoms in the (x): v(x) =M ,u,(n), and interactions among the atoms
cell. At last, the process is accompanied by a nonresonantill be characterized by
excitation of companion terms.

As is known from the soliton theor§4,5], the second- Kp(Np, @15 ... iNp,ap)

harmonic generation is described by a system of equations Jp(Xg; - Xp) = \/ﬁ
wy My,
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. The last property allows one to represent a general three-
v(X)= —XE JZ(X;Xl)U(Xl)_XEX Ja(X;X1;X2)v(X1)v(X2).  mode solution in the form
1 1:722

2

3
_ —iw;t
In what follows the consideration will be restricted to the Ul(XO'tO)_JZl Aj(Xp,t)e ! 10g, ¢ (Xo)+e.c., (7)
case of a homogeneous lattice when
where A;j(Xq,t;) are slowly varying amplitudes and;
Jp(Xs o Xp) =y, e (M= N25 .. iNp_ 1= Np). stands forw,, .- .
3) In the second order gf one obtains

We are concerned with solutions of Bg) characterized  5%v 5(Xg,to) , ,
by the amplitude of oscillationa being much less than the T+Z J2(X0:Xg)v2(Xp,to)
relation|K,/Kj|. This determines the effective small param- 0 %o
eter of the problem which can be introducedas A max 52
|K3/K,|<1, and allows one to employ the method of mul- =—2—01(Xg,tp)
tiscale expansion7] against the discrete cw background Todty
(see, e.9.[8,2,1]). This means that the solution of E@) is J
represented in a form of a serie¢x)=3%_,u"v,(x). The -> a(Ng=no)J2(Xo; Xo) s—v1(Xg,to)
small parametey. defines also a set of “times't,= u"t, Xo !
which are regarded as independent variables, and therefore
d/dt==°_,u"(dldt,), and a set of spatial coordinates — D Ja(XoiXEi X 1(Xg to)v (X5, to). (8
n,= u”n. Subject to rather general conditions, established in X0:Xo
[1], all the spatial variables with=1 can be treated as con-
tinuum ones. More precisely, we introduce slow coordinate

X,=an, (v=1), wherea is a lattice constant, and hold the w;* w with },k=1,2,3. The modes wites; come from the

notation)_(o for the pair of disprete variablesn&,a). ) first two terms on the right-hand side of E&) and consti-
Substitution of the expansion fer(x) into the dynamical e a peculiarity of a multiatomic lattice since they are ex-

equation(2) in the leading order results in the equation  jted due to the existence of different branches of the spec-
trum and disappear in the case of a monatomic laftide
%0 1(Xg,to) , , By analogy with the leading ordew,(Xg,ty) can be rep-
0z +Z J2(X0iXp)v1(Xo,to) =0. (4 resented as an expansion over the eigenmatlgs(Xo)
0 Xo which take into account all composite frequencies mentioned

Hereafter only the most “rapid” arguments of the dependentabove' The coefficients of such an expansion are obtained by
variables are indicatefso, for examplep,(Xo,to) depends @PPIVING Zx b, q(Xo) to both sides of Eq(8). In this way

on all X, andt,]. Equation(4) is associated with the eigen- one finds that the effect of the nonlinearity is described by
value problem

Taking into account the explicit forr¥) one concludes that
the companion term may contain only the frequencieand

Ty 77 (Ak 2015 Gm) = > ‘]3(X1;X2;X3)¢Tyk,qk(xl)

Xl,Xz,Xs

Xy q(X2) by g (X3). 9
Herew,  can be interpreted as a frequency of a mode char_-l_h. _
acterized by a pair of quantum numbersd), which label a is sum can be transformed t_aklng into account prop@ity
branch of the spectrumyf and a wave numberq) inside and the general form of the eigenmodes
the first Brillouin zone(BZ). For the sake of definiteness we
use y=1 for the acoustic branch ang¢=2 for optical b o(X)= ia (a)elaan (10)
branches. It is assumed that the eigenvalue prok®nis r4 JN '
subject to the cyclic boundary conditions, i.e., that the lattice
is finite and hasV cells. After all we are interested in the Wherea,, (@) is a normalized complex amplitude of oscil-
limit A/— e, which allows us to calculate all quantities with lations of an atomv. The result reads
the accuracyO(NV"1). The eigenfunctiongp,, 4(x) are cho- 7
sen to make up a complete orthonormal set: Y ol G G+ Gm)

wi,quy,q(x):XE Jo(X;X1) by q(X1)- (5)

— 1
g ¢71:‘11(X)¢72’Q2(X) = 571}’25‘11(12’ :\/_/T/.ﬁqpquqk Q
2 Dy a0 = B (6) X 2 Ayqla)ay g@ay, o (@)
< Sz,
(6 being the Kronecker delta and the bar standing for the XZ ei(pqm—nqk)JalYaz,aa(n'p)_ (12)

complex conjugation p.n
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HereQ is a vector of the reciprocal lattice. Ill. EXAMPLES OF THE SECOND-HARMONIC
Mathematically, the resonant interaction of three waves, GENERATION

numbered, say, by 1, 2, and 3, means that after applying Let us now examine the synchronism conditiga§) in

EXo‘ﬁ%q(XO) both sides of Eq(8) do not become zero si- the case of perfectly matched phaség=0. First of all one
multaneously. Recalling the form of the solutié@) one  can ensure that both equations(irb) are not compatible in
finds from Eq.(11) that conditions of the resonant interaction the case of a monatomic lattice. For a diatomic lattice with
of the three modes are as follows: the nearest-neighbor interactions, when

w2:w1+w3! q2:q1+q3+Q1 (12) KZ(n7a;nl1a1):K25nnl(_1)a+al+lcl(5nn15

aal

where without restriction of generality it is assumed that
w, is the biggest frequency. Subject to these conditions

equations for the amplitude&;(X,,t;) are obtained from _ )
Eq. (8), [here we introduce force constants between neighbor atoms

in different cells (C;) and in one cell £,)], the conditions
A, A, i — (15) are coordinated only if the inequality

En + Ula_Xl =w—1..771,72,y3(Q1 02,03)A2A3, (133

- 5n—1nl5aa1—l_ 5r‘|+lnl5aafl+l) (17)

2°K1KoM 1M 5= 3(K1+ Kp) (M1 +M;)? (18

Eﬂza_xl:w_zjh"z”a(ql’qz’q3)A1A3’ (13D s fulfilled. Note that(18) can be understood as a restriction

on differences between masses and force constants, and
e oAy | . hence, on the width of the gap betyveen the_two branches.
—t v =Ty v, . (01.02.03)A2A; . (130 Thenw, an(_jw2 belo_ng to th_e acoustic a_nd optical branches,
aty IX1 1ies correspondingly. It is not difficult to verify that; # v, un-
) ) ) less the equality if18) occurs(see below This means that
Here vy=il', ,.(q;,q;)/(2w;) is a group velocity of the jn the main region of parameter the group mismatch is an

mode (y;,q;) and intrinsic property of the second-harmonic generation in lat-
tices.
_ — An interesting feature of the problem comes from the fact
FV; 70 ,q|)—a§l (nl_n)‘]2(x’xl)¢’n 'qj(x)¢7l a(X0)- that the synchronism conditions are valid mod@oIn the

(14) solid state physics this phenomenon@t0 andQ+0 is

Considering a diatomic lattice one can verify that all the :
modes cannot belong to the optical branch, and, hence, in |
any process of resonant there-wave interaction an acoustig !
mode necessarily participates. :
In order to describe the second-harmonic generation let |
w1= w3 and g;=q3. ThenA;=A; and the systeni133-
(130 degenerates. This corresponds to perfect phase matchs:
ing. It is not difficult to represent the system describing the
phenomenon in a more general case when there is a rela
tively small mismatch of the wave numbedg=0(u«q,),
of the two modes. As follows from the dispersion relation,
change of the wave numbeg—q;+ &q results in a change
of the frequencyw;— w;+ v;6q. Then the conditions of the
second-harmonic generation take the form

T®q

wy;=2w1+2(v;—v1)60, 0,=20:+Q. (195
It is more convenient to normalize the frequency mismatch

by introducing 6g=uAq, where Ag=0(q,;). Then the
equations governing the second-harmonic generation read

-21_t Clm 0 q| 2%
A, oA, a

2i A o 2i(vo—vy)AQt
t, Ulm:w_zjl,z,l(%,ZQL%)AzAle 2 P,

(163 FIG. 1. Eigenmode structure of the second-harmonic generation
in theU process. Only companion modes resulting in frequencies of
i the principal waves are indicate®, eigenmodes of the first BZ
> 20, A2g2i(vy=vpAgty participating in resonant interactions;, eigenmodes excited in the
2w2‘71'2'1(cIl d1,A1)AL nonresonant wagthe companion terjin ©, a “virtual” eigenmode
(16b) in the second BZ associated with the umklapp process.

A, A,

=+ —_—
gty 2aX,
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known as the normalN) and umklapp () process. The In the opposite limit when

difference between these situations becomes important when

one considers kinetic properties related to phonon-phonon 3

interaction[9]. In the case at hand we also find qualitative VKoM (M= ?(Kﬁ— Ko)(M1+M,),
distinction betweeN andU processes. Indeed;v,<0 if

q<q,<w/(2a), whereG~1.498% ! is the smallest pos-

sible value ofg, which is reached a1, —M,, K£;—K,, and

Q=0. This means that in the mentioned region of the wave a=7: m=0, Q=——, (21)

numberghe second-harmonic generation is accompanied by

a change of the direction of the energy fld¢herwise, when

the gap has a maximal width and the energy transforms

m/(2a)<q,<w/a, the synchronism conditions are satisfiedfrom the standing acoustic wave at the BZ edge

at nonzerdQ andv,v,>0. Thus the peculiarity of our case is to
that weak nonlinearity results in a change of the group Vew,= w, o= VI + ) (M1+My) /(M M,).

locity to opposite in arN process while in &J process the
sign of the velocity if preserved.

the optical mode with the top frequency

In this case
v, =v,=0 and the solution of Eq$16a and(16b) describ-
ing the process in which the energy initially is concentrated

Resonant two-wave interactions are sensitive to the typg the acoustic mode readsee, e.g.[3])
of nonlinearity. So, for example, in the case of a cubic on-

site potentiaIKg(x;xl;x2)=WC,5XX15XXZ (W, characterizes
the intensity of the nonlinear forgthe lattice is governed by
the Hamiltonian

H=§ {3 Ma[Us(N)]2+ 3 M[Ux(n) 12+ 3K, us(n)

—Up(n—1)]%+ 3K,[ux(n) —uy(n)]?
+ 5 Wilug(n) 13+ 5 Wyl up(n) 13} (19
From Eq.(11) one calculates
1 W,
J1,2491,02,01) = \/_K/a;z Mﬁiiaiql(a)az,qz(a).
(20

(22

by o, Lt
T/’ 27 )i anT'

Here A is the initial amplitude of the acoustic wave and the
absolute value of, where

A=A secVE

1 A [w My[My—M; }
2C\K1+Ko(M1+My) M| Mp+M;
M My— My
2M, M2+M1+CH 29

(C=+1-/3/2) plays the part of the effective time of the

energy transfer from the acoustic mode to the optical one.
Notice thatT—~ asW;—W, andM,—M; (i.e., when

the optical branch of the spectrum appears only due to dif-

Thus, the effective nonlinearity depends on a wave numferent linear forcedC, , among the atoms This means that

ber only through the amplitudes of oscillatiorss, 4(«), of
each atom.
the coefficient J;,4(0;,02,0;) becomes explicitly de-

the second-harmonic generation does not occur. The physical

In the case of nonlinear intersite interactionsrigin of the phenomenon lies in the fact that the effective

energy of nonlinear interaction between two modes belong-

pendent on the wave numbers. A physical reason for this i;g to different branches goes to zero in the above limit
quite transparent: in the last case the effective nonlinear infwhat can be easily verified by direct calculation of the last
teraction depends on the phase mismatch between neighbiovo terms in Eq.(19)].

particles.

A common property of the phenomena of two- and three-

It is to be emphasized that the requirem@@) is satisfied wave interactions in a multiatomic lattice is excitation of a
in the limit £,—K;, M;—M,. This, however, does not companion term. Taking into account the diversity of fre-
mean ‘“analytical” transition to a monatomic lattice. The quencies generated due to the nonlinearity, the companion
existence oftwo branches of the spectrum is crucial for the term has a rather combersome form to be represented here
possibility of the second-harmonic generation. In order tdfor the generic case. That is wh(Xq,tp) is given below

illustrate this we note that in the above lingj{—q</2a,

only for the case of the second-harmonic generation in a

while the frequency of the second harmonic tends tadiatomic lattice(17). In this situation one calculates from Eq.

~1.035(/a).

vo(Xo,tg)=—

«71y2(%:3(3111(12)
+ 7221’ 2A1P,— P

['31(d1,d1) 9A; i

_|A2|27222(0,Q2,QZ)¢2 X))+ —2——=—
W17 W2q,

e Sletlog 30, (Xo)+A2

®

0 (Xg) + 2 ) O

2 7|w2t0 X
axl wy— w5, IX $1.4,(X0)

1
> T2 'y 2A02,292,45)

—[4w,]? —4iw1to¢7,4ql(X0) +c.c. (24
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Here all wave numberpq, , (p being an integgrmust be [V. CONCLUSION

understood in the generalized semsg ,*+Q with a vector To conclude, it has been shown that in multiatomic lat-
of the reciprocal lattic&® chosen in such a manner that the tices with cubic nonlinearity resonant interactions among
resultant belongs to the first BZ. harmonics may take place. The systems of equations govern-

The last formula has a number of important conseing the three-wave process and the second-harmonic genera-
quences. First, it follows from E424) that in a generic case tion were derived. Though a second harmonic is generated in

the cubic potential results in a constant displacentiris any diatomic lattice with cubi_c nonlinearithe phenomen_on
has resonant character only if the gap of the spectrum is not

described py the firsF term in the rig_ht-hand gidEhis dis- more thanas J1+C— J1-C)/\2. The second-harmonic
placement is determined by the optical brarafhthe spec-  yeneration occurs at definite frequencies of the cw and is

trum. The next two terms in the right-hand side of E24)  accompanied by modes excited in a nonresonant way. Mean-
mean that thesecond harmonic is excited also in a nonreso-while, the particular solutiori22) represented here does not
nant way They correspond to eigenmodes having the samexhaust the diversity of effects described by the systems
wave numbers as the principal modes do but belonging té16a and (16b). So, for instance, using the analogy with

different branches of the spectrum as shown in Fighls is nonlinear optics one can predict amplification of an acoustic
a general peculiarity of multiatomic latticg$]). The ampli- mode by an optical one, periodic energy exchange between

. . the branches, etc.
tudes of these companion modes are determined by spatia

variations of the envelopes of the principal term and disap- ACKNOWLEDGMENT
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