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It is shown that in a diatomic lattice with cubic nonlinearity resonant second-harmonic generation can take
place. Conditions for the phenomenon to be observed are established. Systems of equations governing three-
and two-wave interactions in a lattice with a complex cell are deduced.@S1063-651X~96!05509-2#

PACS number~s!: 03.40.Kf, 63.20.Pw, 63.20.Ry

I. INTRODUCTION

Propagation of a small-amplitude envelope soliton in any
lattice with cubic nonlinearity is necessarily accompanied by
a harmonic having a frequency two times greater than the
frequency of the discrete carrier wave~cw! @1,2#. In a one-
dimensional monatomic lattice this process has nonresonant
character. This means that the double frequency excitations
are localized about the soliton and have amplitudes much
smaller than the soliton one~such terms will be referred to as
companion terms, while the leading order solution will be
called a principal term!. Suppose now that a one-dimensional
multiatomic lattice is under consideration and that the cw
belongs to the acoustic branch. Under definite conditions it
may occur that the duplicated cw frequency lies on one of
the optical branches. Then propagation of linear waves with
such a frequency is allowed and the process of energy trans-
formation from the principal term to the companion one be-
comes resonant. Using the terminology accepted in nonlinear
optics @3# one can say that this situation corresponds to the
second-harmonic generation.

The process of the second-harmonic generation in optical
media is well studied@3,4#. In particular, it is known that
there are two important conditions for the phenomenon to be
observed. The first one is the presence of nonlinearity which,
as has been mentioned above, results in doubling the cw
frequency. The other important factor is the dispersion which
prevents appearing higher harmonics. Both these factors are
intrinsic properties of a lattice with cubic nonlinearity.
Meanwhile, there are some specific features of the second-
harmonic generation in lattices. The most important one is
that the discreteness introduces effective periodicity and that
is why the so-called synchronism condition takes a special
form. The second feature is that not any lattice with a com-
plex cell allows the second-harmonic generation and some
requirements on the lattice parameters must be imposed. In
particular, the phenomenon is observed only for a definite cw
wavelength and the number of modes originating the second-
harmonic generation is related to the number of atoms in the
cell. At last, the process is accompanied by a nonresonant
excitation of companion terms.

As is known from the soliton theory@4,5#, the second-
harmonic generation is described by a system of equations

which can be treated as a degenerate case of a system gov-
erning resonant three-wave interactions. That is why in the
present paper we first derive equations for three-wave inter-
actions in a lattice with a complex cell, and then analyze
them for the case of a diatomic lattice when two modes co-
incide.

The paper is organized as follows. In Sec. II using the
technique developed in@1# the systems governing the three-
wave interaction and the second-harmonic generation are de-
rived. Examples of the second-harmonic generation in di-
atomic lattices are considered in Sec. III. The results are
summarized in the Conclusion.

II. EVOLUTION EQUATIONS

To be more specific we consider a lattice described by the
Hamiltonian of a rather general form

H5 1
2(
n,a

Ma@ u̇a~n!#2

1 1
2 (
n1 ,a1

(
n2 ,a2

K2~n1 ,a1 ;n2 ,a2!ua1
~n1!ua2

~n2!

1 1
3 (
n1 ,a1

••• (
n3 ,a3

K3~n1 ,a1 ; . . . ;n3 ,a3!

3ua1
~n1!•••ua3

~n3!. ~1!

Here ua(n) is a small displacement from the equilibrium
position of theath atom in thenth cell,Ma is a mass of the
ath atom, Kp(n1 ,a1 ; . . . ;np ,ap) are linear (p52) and
nonlinear (p53) force constants, and the overdot stands for
the derivative with respect to time.

For the mathematical treatment of the phenomenon it is
convenient to introduce the terminology as follows@6#. The
pair (n,a) will be designated asx: x5(n,a), the displace-
ment of an atom will be described by a normalized function
v(x): v(x)5AMaua(n), and interactions among the atoms
will be characterized by

Jp~x1 ; . . . ;xp!5
Kp~n1 ,a1 ; . . . ;np ,ap!

AMa1
•••Ma2

.

The coefficientsJp(x1 ; . . . ;xp) are invariant with respect to
permutations of the arguments. Then the dynamical equation
describing the lattice reads
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v̈~x!52(
x1

J2~x;x1!v~x1!2 (
x1 ,x2

J3~x;x1 ;x2!v~x1!v~x2!.

~2!

In what follows the consideration will be restricted to the
case of a homogeneous lattice when

Jp~x1 ; . . . ;xp!5Ja1 , . . . ,ap
~n12n2 ; . . . ;np212np!.

~3!

We are concerned with solutions of Eq.~2! characterized
by the amplitude of oscillationsA being much less than the
relationuK2 /K3u. This determines the effective small param-
eter of the problem which can be introduced asm5A max
uK3 /K2u!1, and allows one to employ the method of mul-
tiscale expansion@7# against the discrete cw background
~see, e.g.,@8,2,1#!. This means that the solution of Eq.~2! is
represented in a form of a seriesv(x)5(n51

` mnvn(x). The
small parameterm defines also a set of ‘‘times’’tn5mnt,
which are regarded as independent variables, and therefore
d/dt5(n50

` mn(]/]tn), and a set of spatial coordinates
nn5mnn. Subject to rather general conditions, established in
@1#, all the spatial variables withn>1 can be treated as con-
tinuum ones. More precisely, we introduce slow coordinates
Xn5ann (n>1), wherea is a lattice constant, and hold the
notationX0 for the pair of discrete variables (n0 ,a).

Substitution of the expansion forv(x) into the dynamical
equation~2! in the leading order results in the equation

]2v1~X0 ,t0!

]t0
2 1(

X08
J2~X0 ;X08!v1~X08 ,t0!50. ~4!

Hereafter only the most ‘‘rapid’’ arguments of the dependent
variables are indicated@so, for example,v1(X0 ,t0) depends
on all Xn and tn#. Equation~4! is associated with the eigen-
value problem

vg,q
2 fg,q~x!5(

x1
J2~x;x1!fg,q~x1!. ~5!

Herevg,q can be interpreted as a frequency of a mode char-
acterized by a pair of quantum numbers (g,q), which label a
branch of the spectrum (g) and a wave number (q) inside
the first Brillouin zone~BZ!. For the sake of definiteness we
use g51 for the acoustic branch andg>2 for optical
branches. It is assumed that the eigenvalue problem~5! is
subject to the cyclic boundary conditions, i.e., that the lattice
is finite and hasN cells. After all we are interested in the
limit N→`, which allows us to calculate all quantities with
the accuracyO(N21). The eigenfunctionsfg,q(x) are cho-
sen to make up a complete orthonormal set:

(
x

f̄g1 ,q1
~x!fg2 ,q2

~x!5dg1g2
dq1q2,

(
g,q

f̄g,q~x!fg,q~x1!5dxx1 ~6!

(d being the Kronecker delta and the bar standing for the
complex conjugation!.

The last property allows one to represent a general three-
mode solution in the form

v1~X0 ,t0!5(
j51

3

Aj~X1 ,t1!e
2 iv j t0fg j ,qj

~X0!1c.c., ~7!

where Aj (X1 ,t1) are slowly varying amplitudes andv j
stands forvg j ,qj

.
In the second order ofm one obtains

]2v2~X0 ,t0!

]t0
2 1(

X08
J2~X0 ;X08!v2~X08 ,t0!

522
]2

]t0]t1
v1~X0 ,t0!

2(
X08

a~n082n0!J2~X0 ;X08!
]

]X1
v1~X08 ,t0!

2 (
X08 ,X09

J3~X0 ;X08 ;X09!v1~X08 ,t0!v1~X09 ,t0!. ~8!

Taking into account the explicit form~7! one concludes that
the companion term may contain only the frequenciesv j and
v j6vk with j ,k51,2,3. The modes withv j come from the
first two terms on the right-hand side of Eq.~8! and consti-
tute a peculiarity of a multiatomic lattice since they are ex-
cited due to the existence of different branches of the spec-
trum and disappear in the case of a monatomic lattice@1#.

By analogy with the leading order,v2(X0 ,t0) can be rep-
resented as an expansion over the eigenmodesfg,q(X0)
which take into account all composite frequencies mentioned
above. The coefficients of such an expansion are obtained by
applying(X0

f̄g,q(X0) to both sides of Eq.~8!. In this way
one finds that the effect of the nonlinearity is described by

Jgk ,g l ,gm
~qk ,ql ,qm!5 (

x1 ,x2 ,x3
J3~x1 ;x2 ;x3!f̄gk ,qk

~x1!

3fg l ,ql
~x2!f̄gm ,qm

~x3!. ~9!

This sum can be transformed taking into account property~3!
and the general form of the eigenmodes

fg,q~x!5
1

AN
ag,q~a!eiqan, ~10!

whereag,q(a) is a normalized complex amplitude of oscil-
lations of an atoma. The result reads

Jgk ,g l ,gm
~qk ,ql ,qm!

5
1

AN
dql2qm2qk ,Q

3 (
a1 ,a2 ,a3

āgk ,qk
~a1!ag l ,ql

~a2!āgm ,qm
~a3!

3(
p,n

ei ~pqm2nqk!Ja1 ,a2 ,a3
~n,p!. ~11!
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HereQ is a vector of the reciprocal lattice.
Mathematically, the resonant interaction of three waves,

numbered, say, by 1, 2, and 3, means that after applying
(X0

f̄g,q(X0) both sides of Eq.~8! do not become zero si-
multaneously. Recalling the form of the solution~7! one
finds from Eq.~11! that conditions of the resonant interaction
of the three modes are as follows:

v25v11v3 , q25q11q31Q, ~12!

where without restriction of generality it is assumed that
v2 is the biggest frequency. Subject to these conditions
equations for the amplitudesAj (X1 ,t1) are obtained from
Eq. ~8!,

]A1

]t1
1y1

]A1

]X1
5

i

v1
Jg1 ,g2 ,g3

~q1 ,q2 ,q3!A2Ā3 , ~13a!

]A2

]t1
1y2

]A2

]X1
5

i

v2
J̄g1 ,g2 ,g3

~q1 ,q2 ,q3!A1A3 , ~13b!

]A3

]t1
1y3

]A3

]X1
5

i

v3
Jg1 ,g2 ,g3

~q1 ,q2 ,q3!A2Ā1 . ~13c!

Here y j5 iGg j ,g j
(qj ,qj )/(2v j ) is a group velocity of the

mode (g j ,qj ) and

Gg j ,g l
~qj ,ql !5a(

x,x1
~n12n!J2~x,x1!f̄g j ,qj

~x!fg l ,ql
~x1!.

~14!

Considering a diatomic lattice one can verify that all the
modes cannot belong to the optical branch, and, hence, in
any process of resonant there-wave interaction an acoustic
mode necessarily participates.

In order to describe the second-harmonic generation let
v15v3 and q15q3. ThenA15A3 and the system~13a!–
~13c! degenerates. This corresponds to perfect phase match-
ing. It is not difficult to represent the system describing the
phenomenon in a more general case when there is a rela-
tively small mismatch of the wave numbers,dq5O(mq1),
of the two modes. As follows from the dispersion relation,
change of the wave numberqj°qj1dq results in a change
of the frequencyv j°v j1y jdq. Then the conditions of the
second-harmonic generation take the form

v252v112~y22y1!dq, q252q11Q. ~15!

It is more convenient to normalize the frequency mismatch
by introducing dq5mDq, where Dq5O(q1). Then the
equations governing the second-harmonic generation read

]A1

]t1
1y1

]A1

]X1
5
2i

v2
J1,2,1~q1,2q1 ,q1!A2Ā1e

22i ~y22y1!Dqt1,

~16a!

]A2

]t1
1y2

]A2

]X1
5

i

2v2
J̄1,2,1~q1,2q1 ,q1!A1

2e2i ~y22y1!Dqt1.

~16b!

III. EXAMPLES OF THE SECOND-HARMONIC
GENERATION

Let us now examine the synchronism conditions~15! in
the case of perfectly matched phases,dq50. First of all one
can ensure that both equations in~15! are not compatible in
the case of a monatomic lattice. For a diatomic lattice with
the nearest-neighbor interactions, when

K2~n,a;n1 ,a1!5K2dnn1~21!a1a11K1~dnn1daa1

2dn21n1
daa1212dn11n1

daa111! ~17!

@here we introduce force constants between neighbor atoms
in different cells (K1) and in one cell (K2)#, the conditions
~15! are coordinated only if the inequality

26K1K2M1M2>3~K11K2!
2~M11M2!

2 ~18!

is fulfilled. Note that~18! can be understood as a restriction
on differences between masses and force constants, and
hence, on the width of the gap between the two branches.
Thenv1 andv2 belong to the acoustic and optical branches,
correspondingly. It is not difficult to verify thaty1Þy2 un-
less the equality in~18! occurs~see below!. This means that
in the main region of parameter the group mismatch is an
intrinsic property of the second-harmonic generation in lat-
tices.

An interesting feature of the problem comes from the fact
that the synchronism conditions are valid moduloQ. In the
solid state physics this phenomenon atQ50 andQÞ0 is

FIG. 1. Eigenmode structure of the second-harmonic generation
in theU process. Only companion modes resulting in frequencies of
the principal waves are indicated.d, eigenmodes of the first BZ
participating in resonant interactions;s, eigenmodes excited in the
nonresonant way~the companion term!; (, a ‘‘virtual’’ eigenmode
in the second BZ associated with the umklapp process.
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known as the normal (N) and umklapp (U) process. The
difference between these situations becomes important when
one considers kinetic properties related to phonon-phonon
interaction@9#. In the case at hand we also find qualitative
distinction betweenN andU processes. Indeed,y1y2,0 if
q̃,q1,p/(2a), where q̃'1.4989a21 is the smallest pos-
sible value ofq1 which is reached atM1→M2, K1→K2, and
Q50. This means that in the mentioned region of the wave
numbersthe second-harmonic generation is accompanied by
a change of the direction of the energy flux. Otherwise, when
p/(2a),q1,p/a, the synchronism conditions are satisfied
at nonzeroQ andy1y2.0. Thus the peculiarity of our case is
that weak nonlinearity results in a change of the group ve-
locity to opposite in anN process while in aU process the
sign of the velocity if preserved.

Resonant two-wave interactions are sensitive to the type
of nonlinearity. So, for example, in the case of a cubic on-
site potentialK3(x;x1 ;x2)5Wadxx1dxx2 (Wa characterizes
the intensity of the nonlinear force! the lattice is governed by
the Hamiltonian

H5(
n

$ 1
2 M1@ u̇1~n!#21 1

2 M2@ u̇2~n!#21 1
2K1@u1~n!

2u2~n21!#21 1
2K2@u2~n!2u1~n!#2

1 1
3 W1@u1~n!#31 1

3 W2@u2~n!#3%. ~19!

From Eq.~11! one calculates

J1,2,1~q1 ,q2 ,q1!5
1

AN (
a51,2

Wa

Ma
3/2ā1,q1

2 ~a!a2,q2~a!.

~20!

Thus, the effective nonlinearity depends on a wave num-
ber only through the amplitudes of oscillations,ag,q(a), of
each atom. In the case of nonlinear intersite interactions
the coefficient J1,2,1(q1 ,q2 ,q1) becomes explicitly de-
pendent on the wave numbers. A physical reason for this is
quite transparent: in the last case the effective nonlinear in-
teraction depends on the phase mismatch between neighbor
particles.

It is to be emphasized that the requirement~18! is satisfied
in the limit K2→K1, M1→M2. This, however, does not
mean ‘‘analytical’’ transition to a monatomic lattice. The
existence oftwo branches of the spectrum is crucial for the
possibility of the second-harmonic generation. In order to
illustrate this we note that in the above limitq1→q̃,p/2a,
while the frequency of the second harmonic tends to
ṽ'1.035v(p/a).

In the opposite limit when

AK1K2M1M25
A3
8

~K11K2!~M11M2!,

ql5
p

a
, qm50, Q52

2p

a
, ~21!

the gap has a maximal width and the energy transforms
from the standing acoustic wave at the BZ edge
to the optical mode with the top frequency
v25v2,05A(K11K2)(M11M2)/(M1M2). In this case
y15y250 and the solution of Eqs.~16a! and ~16b! describ-
ing the process in which the energy initially is concentrated
in the acoustic mode reads~see, e.g.,@3#!

A15A sechS t1t D , A25
1

2i
A tanhS t1t D . ~22!

HereA is the initial amplitude of the acoustic wave and the
absolute value oft, where

1

t
5

A
2CAK11K2~M11M2!

HW1

M2

M1
FM22M1

M21M1
2CG

2W2

M1

M2
FM22M1

M21M1
1CG J ~23!

(C5A12A3/2) plays the part of the effective time of the
energy transfer from the acoustic mode to the optical one.

Notice thatt→` asW1→W2 andM2→M1 ~i.e., when
the optical branch of the spectrum appears only due to dif-
ferent linear forcesK1,2 among the atoms!. This means that
the second-harmonic generation does not occur. The physical
origin of the phenomenon lies in the fact that the effective
energy of nonlinear interaction between two modes belong-
ing to different branches goes to zero in the above limit
@what can be easily verified by direct calculation of the last
two terms in Eq.~19!#.

A common property of the phenomena of two- and three-
wave interactions in a multiatomic lattice is excitation of a
companion term. Taking into account the diversity of fre-
quencies generated due to the nonlinearity, the companion
term has a rather combersome form to be represented here
for the generic case. That is whyv2(X0 ,t0) is given below
only for the case of the second-harmonic generation in a
diatomic lattice~17!. In this situation one calculates from Eq.
~8!

v2~X0 ,t0!52
2

v2,0
uA2u2J2,2,2~0,q2 ,q2!f2,0~X0!1

G2,1~q1 ,q1!

v1
22v2,q1

2

]A1

]X1
e2 iv1t0f2,q1

~X0!1
G2,1~q2 ,q2!

v2
22v2,q2

2

]A2

]X1
e2 iv2t0f1,q2

~X0!

1 (
g51,2 H 2A1A2

J1,g,2~q1,3q1 ,q2!
vg,3q1
2 2@3v1#

2 e23iv1t0fg,3q1
~X0!1A2

2J2,g,2~q2,2q2 ,q2!
vg,4q1
2 2@4v1#

2 e24iv1t0fg,4q1
~X0!J 1c.c. ~24!
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Here all wave numberspq1,2 (p being an integer! must be
understood in the generalized sensepq1,21Q with a vector
of the reciprocal latticeQ chosen in such a manner that the
resultant belongs to the first BZ.

The last formula has a number of important conse-
quences. First, it follows from Eq.~24! that in a generic case
the cubic potential results in a constant displacement~it is
described by the first term in the right-hand side!. This dis-
placement is determined by the optical branchof the spec-
trum. The next two terms in the right-hand side of Eq.~24!
mean that thesecond harmonic is excited also in a nonreso-
nant way. They correspond to eigenmodes having the same
wave numbers as the principal modes do but belonging to
different branches of the spectrum as shown in Fig. 1~this is
a general peculiarity of multiatomic lattices@1#!. The ampli-
tudes of these companion modes are determined by spatial
variations of the envelopes of the principal term and disap-
pear when energy transforms between two nonmodulated
waves. At last, Eq.~24! displays nonresonant excitation of
the third and quartic harmonics~the last two terms in the
right-hand side!.

IV. CONCLUSION

To conclude, it has been shown that in multiatomic lat-
tices with cubic nonlinearity resonant interactions among
harmonics may take place. The systems of equations govern-
ing the three-wave process and the second-harmonic genera-
tion were derived. Though a second harmonic is generated in
any diatomic lattice with cubic nonlinearitythe phenomenon
has resonant character only if the gap of the spectrum is not
more thanv2,0(A11C2A12C)/A2. The second-harmonic
generation occurs at definite frequencies of the cw and is
accompanied by modes excited in a nonresonant way. Mean-
while, the particular solution~22! represented here does not
exhaust the diversity of effects described by the systems
~16a! and ~16b!. So, for instance, using the analogy with
nonlinear optics one can predict amplification of an acoustic
mode by an optical one, periodic energy exchange between
the branches, etc.
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